1
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$\,\alpha \in \left( {0,{\pi \over 2}} \right)\,\,then\,\,\sqrt {{x^2} + x} + {{{{\tan }^2}\alpha } \over {\sqrt {{x^2} + x} }}$$ is always greater than or equal to
A
$$2\,\tan \alpha \,$$
B
1
C
2
D
$${\sec ^2}\,\alpha $$
2
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+2
-0.5
The set of all real numbers x for which $${x^2} - \left| {x + 2} \right| + x > 0$$, is
A
$$( - \infty ,\, - 2) \cup (2,\infty )$$
B
$$( - \infty ,\, - \sqrt 2 ) \cup (\sqrt 2 ,\infty )$$
C
$$( - \infty ,\, - 1) \cup (1,\infty )$$
D
$$(\sqrt 2 ,\infty )$$
3
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $${a_1},{a_2}.......,{a_n}$$ are positive real numbers whose product is a fixed number c, then the minimum value of $${a_1} + {a_2} + ..... + {a_{n - 1}} + 2{a_n}$$ is
A
$$n{(2c)^{1/n}}$$
B
$$(n + 1){c^{1/n}}$$
C
$$2n{c^{1/n}}$$
D
$$(n + 1)\,{(2c)^{1/n}}$$
4
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$\alpha \,\text{and}\,\beta $$ $$(\alpha \, < \,\beta )$$ are the roots of the equation $${x^2} + bx + c = 0\,$$, where $$c < 0 < b$$, then
A
$$0 < \alpha \, < \,\beta \,$$
B
$$\alpha \, < \,0 < \beta \,<\left| \alpha \right|$$
C
$$\alpha \, < \beta \, < 0\,$$
D
$$\alpha \, < \,0 < \left| \alpha \right| < \beta $$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12