1
IIT-JEE 2000
Subjective
+10
-0
Let $$ABC$$ and $$PQR$$ be any two triangles in the same plane. Assume that the prependiculars from the points $$A, B, C$$ to the sides $$QR, RP, PQ$$ respectively are concurrent. Using vector methods or otherwise, prove that the prependiculars from $$P, Q, R$$ to $$BC,$$ $$CA$$, $$AB$$ respectively are also concurrent.
2
IIT-JEE 1998
Subjective
+8
-0
Using co-ordinate geometry, prove that the three altitudes of any triangle are concurrent.
3
IIT-JEE 1996
Subjective
+2
-0
A rectangle $$PQRS$$ has its side $$PQ$$ parallel to the line $$y = mx$$ and vertices $$P, Q$$ and $$S$$ on the lines $$y = a, x = b$$ and $$x = -b,$$ respectively. Find the locus of the vertex $$R$$.
4
IIT-JEE 1993
Subjective
+5
-0
Tagent at a point $${P_1}$$ {other than $$(0, 0)$$} on the curve $$y = {x^3}$$ meets the curve again at $${P_2}$$. The tangent at $${P_2}$$ meets the curve at $${P_3}$$, and so on. Show that the abscissae of $${P_1},\,{P_2},{P_3}......{P_n},$$ form a G.P. Also find the ratio.

[area $$\left( {\Delta {P_1},{P_2},{P_3}} \right)$$]/[area $$\left( {{P_2},{P_3},{P_4}} \right)$$]

EXAM MAP
Medical
NEET