1
IIT-JEE 1996
Subjective
+2
-0
A rectangle $$PQRS$$ has its side $$PQ$$ parallel to the line $$y = mx$$ and vertices $$P, Q$$ and $$S$$ on the lines $$y = a, x = b$$ and $$x = -b,$$ respectively. Find the locus of the vertex $$R$$.
2
IIT-JEE 1993
Subjective
+5
-0
Tagent at a point $${P_1}$$ {other than $$(0, 0)$$} on the curve $$y = {x^3}$$ meets the curve again at $${P_2}$$. The tangent at $${P_2}$$ meets the curve at $${P_3}$$, and so on. Show that the abscissae of $${P_1},\,{P_2},{P_3}......{P_n},$$ form a G.P. Also find the ratio.

[area $$\left( {\Delta {P_1},{P_2},{P_3}} \right)$$]/[area $$\left( {{P_2},{P_3},{P_4}} \right)$$]

3
IIT-JEE 1993
Subjective
+5
-0
A line through $$A (-5, -4)$$ meets the line $$x + 3y + 2 = 0,$$ $$2x + y + 4 = 0$$ and $$x - y - 5 = 0$$ at the points $$B, C$$ and $$D$$ respectively. If $${\left( {15/AB} \right)^2} + {\left( {10/AC} \right)^2} = {\left( {6/AD} \right)^2},$$ find the equation of the line.
4
IIT-JEE 1992
Subjective
+6
-0
Determine all values of $$\alpha $$ for which the point $$\left( {\alpha ,\,{\alpha ^2}} \right)$$ lies insides the triangle formed by the lines $$$\matrix{ {2x + 3y - 1 = 0} \cr {x + 2y - 3 = 0} \cr {5x - 6y - 1 = 0} \cr } $$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12