1

IIT-JEE 1994

MCQ (Single Correct Answer)
Let $$0 < x < {\pi \over 4}$$ then $$\left( {\sec 2x - \tan 2x} \right)$$ equals
A
$$\tan \left[ {x - {\pi \over 4}} \right]$$
B
$$\tan \left[ {{\pi \over 4} - x} \right]$$
C
$$\tan \left[ {x + {\pi \over 4}} \right]$$
D
$${\tan ^2}\left[ {x + {\pi \over 4}} \right]$$
2

IIT-JEE 1993

MCQ (Single Correct Answer)
Number of solutions of the equation $$\tan x + \sec x = 2\cos x\,$$ lying in the interval $$\left[ {0,2\pi } \right]$$ is:
A
0
B
1
C
2
D
3
3

IIT-JEE 1992

MCQ (Single Correct Answer)
In this questions there are entries in columns 1 and 2. Each entry in column 1 is related to exactly one entry in column 2. Write the correct letter from column 2 against the entry number in column 1 in your answer book.

$${{\sin \,3\alpha } \over {\cos 2\alpha }}$$ is

Column $${\rm I}$$

(A) positive

(B) negative

Column $${\rm I}$$$${\rm I}$$

(p) $$\left( {{{13\pi } \over {48}},{{14\pi } \over {48}}} \right)$$

(q) $$\left( {{{14\pi } \over {48}},\,{{18\pi } \over {48}}} \right)$$

(r) $$\left( {{{18\pi } \over {48}},\,{{23\pi } \over {48}}} \right)$$

(s) $$\left( {0,\,{\pi \over 2}} \right)$$

Options:-

A
$$\left( A \right) - r,\,\left( B \right) - q$$
B
$$\left( A \right) - r,\,\left( B \right) - p$$
C
$$\left( A \right) - s,\,\left( B \right) - r$$
D
$$\left( A \right) - p,\,\left( B \right) - q$$
4

IIT-JEE 1990

MCQ (Single Correct Answer)
The equation $$\left( {\cos p - 1} \right){x^2} + \left( {\cos p} \right)x + \sin p = 0\,$$ In the variable x, has real roots. Then p can take any value in the interval
A
$$\left( {0,2\pi } \right)\,$$
B
$$\left( { - \pi ,0} \right)\,\,\,$$
C
$$\left[ { - {\pi \over 2},{\pi \over 2}} \right]\,$$
D
$$\left( {0,\pi } \right)$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12