1
IIT-JEE 1996
Fill in the Blanks
+1
-0
If $$x{e^{xy}} = y + {\sin ^2}x,$$ then at $$x = 0,{{dy} \over {dx}} = ..............$$
2
IIT-JEE 1990
Fill in the Blanks
+2
-0
If $$f\left( x \right) = \left| {x - 2} \right|$$ and $$g\left( x \right) = f\left[ {f\left( x \right)} \right]$$, then $$g'\left( x \right) = ...............$$ for $$x > 20$$
3
IIT-JEE 1986
Fill in the Blanks
+2
-0
The derivative of $${\sec ^{ - 1}}\left( {{1 \over {2{x^2} - 1}}} \right)$$ with respect to $$\sqrt {1 - {x^2}}$$ at $$x = {1 \over 2}$$ is ...............
4
IIT-JEE 1985
Fill in the Blanks
+2
-0
If $${f_r}\left( x \right),{g_r}\left( x \right),{h_r}\left( x \right),r = 1,2,3$$ are polynomials in $$x$$ such that $${f_r}\left( a \right) = {g_r}\left( a \right) = {h_r}\left( a \right),r = 1,2,3$$
and $$F\left( x \right) = \left| {\matrix{ {{f_1}\left( x \right)} & {{f_2}\left( x \right)} & {{f_3}\left( x \right)} \cr {{g_1}\left( x \right)} & {{g_2}\left( x \right)} & {{g_3}\left( x \right)} \cr {{h_1}\left( x \right)} & {{h_2}\left( x \right)} & {{h_3}\left( x \right)} \cr } } \right|$$ then $$F'\left( x \right)$$ at $$x = a$$ is ...........
EXAM MAP
Medical
NEET