1
IIT-JEE 1996
Fill in the Blanks
+1
-0
If $$x{e^{xy}} = y + {\sin ^2}x,$$ then at $$x = 0,{{dy} \over {dx}} = ..............$$
2
IIT-JEE 1990
Fill in the Blanks
+2
-0
If $$f\left( x \right) = \left| {x - 2} \right|$$ and $$g\left( x \right) = f\left[ {f\left( x \right)} \right]$$, then $$g'\left( x \right) = ...............$$ for $$x > 20$$
3
IIT-JEE 1986
Fill in the Blanks
+2
-0
The derivative of $${\sec ^{ - 1}}\left( {{1 \over {2{x^2} - 1}}} \right)$$ with respect to $$\sqrt {1 - {x^2}} $$ at $$x = {1 \over 2}$$ is ...............
4
IIT-JEE 1985
Fill in the Blanks
+2
-0
If $${f_r}\left( x \right),{g_r}\left( x \right),{h_r}\left( x \right),r = 1,2,3$$ are polynomials in $$x$$ such that $${f_r}\left( a \right) = {g_r}\left( a \right) = {h_r}\left( a \right),r = 1,2,3$$
and $$F\left( x \right) = \left| {\matrix{ {{f_1}\left( x \right)} & {{f_2}\left( x \right)} & {{f_3}\left( x \right)} \cr {{g_1}\left( x \right)} & {{g_2}\left( x \right)} & {{g_3}\left( x \right)} \cr {{h_1}\left( x \right)} & {{h_2}\left( x \right)} & {{h_3}\left( x \right)} \cr } } \right|$$ then $$F'\left( x \right)$$ at $$x = a$$ is ...........
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12