1

IIT-JEE 1990

Fill in the Blanks
If $$f\left( x \right) = \left| {x - 2} \right|$$ and $$g\left( x \right) = f\left[ {f\left( x \right)} \right]$$, then $$g'\left( x \right) = ...............$$ for $$x > 20$$

Answer

$$1$$
2

IIT-JEE 1986

Fill in the Blanks
The derivative of $${\sec ^{ - 1}}\left( {{1 \over {2{x^2} - 1}}} \right)$$ with respect to $$\sqrt {1 - {x^2}} $$ at $$x = {1 \over 2}$$ is ...............

Answer

$$4$$
3

IIT-JEE 1985

Fill in the Blanks
If $$f\left( x \right) = {\log _x}\left( {In\,x} \right),$$ then $$f'\left( x \right)$$ at $$x=e$$ is ................

Answer

$$1/e$$
4

IIT-JEE 1985

Fill in the Blanks
If $${f_r}\left( x \right),{g_r}\left( x \right),{h_r}\left( x \right),r = 1,2,3$$ are polynomials in $$x$$ such that $${f_r}\left( a \right) = {g_r}\left( a \right) = {h_r}\left( a \right),r = 1,2,3$$
and $$F\left( x \right) = \left| {\matrix{ {{f_1}\left( x \right)} & {{f_2}\left( x \right)} & {{f_3}\left( x \right)} \cr {{g_1}\left( x \right)} & {{g_2}\left( x \right)} & {{g_3}\left( x \right)} \cr {{h_1}\left( x \right)} & {{h_2}\left( x \right)} & {{h_3}\left( x \right)} \cr } } \right|$$ then $$F'\left( x \right)$$ at $$x = a$$ is ...........

Answer

Zero

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12