1

IIT-JEE 2004 Screening

MCQ (Single Correct Answer)
If one root is square of the other root of the equation $${x^2} + px + q = 0$$, then the realation between $$p$$ and $$q$$ is
A
$${p^3} - q\left( {3p - 1} \right) + {q^2} = 0$$
B
$${p^3} - q\left( {3p + 1} \right) + {q^2} = 0$$
C
$${p^3} + q\left( {3p - 1} \right) + {q^2} = 0$$
D
$${p^3} + q\left( {3p + 1} \right) + {q^2} = 0$$
2

IIT-JEE 2003 Screening

MCQ (Single Correct Answer)
If $$\,\alpha \in \left( {0,{\pi \over 2}} \right)\,\,then\,\,\sqrt {{x^2} + x} + {{{{\tan }^2}\alpha } \over {\sqrt {{x^2} + x} }}$$ is always greater than or equal to
A
$$2\,\tan \alpha \,$$
B
1
C
2
D
$${\sec ^2}\,\alpha $$
3

IIT-JEE 2002 Screening

MCQ (Single Correct Answer)
The set of all real numbers x for which $${x^2} - \left| {x + 2} \right| + x > 0$$, is
A
$$( - \infty ,\, - 2) \cup (2,\infty )$$
B
$$( - \infty ,\, - \sqrt 2 ) \cup (\sqrt 2 ,\infty )$$
C
$$( - \infty ,\, - 1) \cup (1,\infty )$$
D
$$(\sqrt 2 ,\infty )$$
4

IIT-JEE 2002 Screening

MCQ (Single Correct Answer)
If $${a_1},{a_2}.......,{a_n}$$ are positive real numbers whose product is a fixed number c, then the minimum value of $${a_1} + {a_2} + ..... + {a_{n - 1}} + 2{a_n}$$ is
A
$$n{(2c)^{1/n}}$$
B
$$(n + 1){c^{1/n}}$$
C
$$2n{c^{1/n}}$$
D
$$(n + 1)\,{(2c)^{1/n}}$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12