NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 2001 Screening

MCQ (Single Correct Answer)
If $$f\left( x \right) = x{e^{x\left( {1 - x} \right)}},$$ then $$f(x)$$ is
A
increasing on $$\left[ { - 1/2,1} \right]$$
B
decreasing on $$R$$
C
increasing on $$R$$
D
decreasing on $$\left[ { - 1/2,1} \right]$$
2

IIT-JEE 2000 Screening

MCQ (Single Correct Answer)
Let $$f\left( x \right) = \left\{ {\matrix{ {\left| x \right|,} & {for} & {0 < \left| x \right| \le 2} \cr {1,} & {for} & {x = 0} \cr } } \right.$$ then at $$x=0$$, $$f$$ has
A
a local maximum
B
no local maximum
C
a local minimum
D
no extremum
3

IIT-JEE 2000 Screening

MCQ (Single Correct Answer)
For all $$x \in \left( {0,1} \right)$$
A
$${e^x} < 1 + x$$
B
$${\log _e}\left( {1 + x} \right) < x$$
C
$$\sin x > x$$
D
$${\log _e}x > x$$
4

IIT-JEE 2000 Screening

MCQ (Single Correct Answer)
If the normal to the curve $$y = f\left( x \right)$$ and the point $$(3, 4)$$ makes an angle $${{{3\pi } \over 4}}$$ with the positive $$x$$-axis, then $$f'\left( 3 \right) = $$
A
$$-1$$
B
$$ - {3 \over 4}$$
C
$${4 \over 3}$$
D
$$1$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12