1
IIT-JEE 2001 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$f\left( x \right) = x{e^{x\left( {1 - x} \right)}},$$ then $$f(x)$$ is
A
increasing on $$\left[ { - 1/2,1} \right]$$
B
decreasing on $$R$$
C
increasing on $$R$$
D
decreasing on $$\left[ { - 1/2,1} \right]$$
2
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
Let $$f\left( x \right) = \int {{e^x}\left( {x - 1} \right)\left( {x - 2} \right)dx.} $$ Then $$f$$ decreases in the interval
A
$$\left( { - \infty ,2} \right)$$
B
$$\left( { - 2, - 1} \right)$$
C
$$\left( {1,2} \right)$$
D
$$\left( {2, + \infty } \right)$$
3
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
If the normal to the curve $$y = f\left( x \right)$$ and the point $$(3, 4)$$ makes an angle $${{{3\pi } \over 4}}$$ with the positive $$x$$-axis, then $$f'\left( 3 \right) = $$
A
$$-1$$
B
$$ - {3 \over 4}$$
C
$${4 \over 3}$$
D
$$1$$
4
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
Let $$f\left( x \right) = \left\{ {\matrix{ {\left| x \right|,} & {for} & {0 < \left| x \right| \le 2} \cr {1,} & {for} & {x = 0} \cr } } \right.$$ then at $$x=0$$, $$f$$ has
A
a local maximum
B
no local maximum
C
a local minimum
D
no extremum
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12