1
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $${a_1},{a_2}.......,{a_n}$$ are positive real numbers whose product is a fixed number c, then the minimum value of $${a_1} + {a_2} + ..... + {a_{n - 1}} + 2{a_n}$$ is
A
$$n{(2c)^{1/n}}$$
B
$$(n + 1){c^{1/n}}$$
C
$$2n{c^{1/n}}$$
D
$$(n + 1)\,{(2c)^{1/n}}$$
2
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
If a, b, c, d are positive real numbers such that a + b + c + d = 2, then M = (a + b) (c + d) satisfies the relation
A
$$0 \le M \le 1$$
B
$$1 \le M \le 2$$
C
$$2 \le M \le 3$$
D
$$3 \le M \le 4$$
3
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
For the equation $$3{x^2} + px + 3 = 0$$. p > 0, if one of the root is square of the other, then p is equal to
A
1/3
B
1
C
3
D
2/3
4
IIT-JEE 2000 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$\alpha \,\text{and}\,\beta $$ $$(\alpha \, < \,\beta )$$ are the roots of the equation $${x^2} + bx + c = 0\,$$, where $$c < 0 < b$$, then
A
$$0 < \alpha \, < \,\beta \,$$
B
$$\alpha \, < \,0 < \beta \,<\left| \alpha \right|$$
C
$$\alpha \, < \beta \, < 0\,$$
D
$$\alpha \, < \,0 < \left| \alpha \right| < \beta $$
JEE Advanced Subjects
EXAM MAP