1
IIT-JEE 2000
Subjective
+10
-0
For points $$P\,\,\, = \left( {{x_1},\,{y_1}} \right)$$ and $$Q\,\,\, = \left( {{x_2},\,{y_2}} \right)$$ of the co-ordinate plane, a new distance $$d\left( {P,\,Q} \right)$$ is defined by $$d\left( {P,\,Q} \right)$$$$ = \left( {{x_2},\,{y_2}} \right)\left| {{x_1} - {x_2}} \right| + \left| {{y_1} - {y_2}} \right|.$$ Let $$O = (0, 0)$$ and $$A = (3, 2)$$. Prove that the set of points in the first quadrant which are equidistant (with respect to the new distance) from $$O$$ and $$A$$ consists of the union of a line segment of finite length and an infinite ray. Sketch this set in a labelled diagram.
2
IIT-JEE 1998
Subjective
+8
-0
Using co-ordinate geometry, prove that the three altitudes of any triangle are concurrent.
3
IIT-JEE 1996
Subjective
+2
-0
A rectangle $$PQRS$$ has its side $$PQ$$ parallel to the line $$y = mx$$ and vertices $$P, Q$$ and $$S$$ on the lines $$y = a, x = b$$ and $$x = -b,$$ respectively. Find the locus of the vertex $$R$$.
4
IIT-JEE 1993
Subjective
+5
-0
A line through $$A (-5, -4)$$ meets the line $$x + 3y + 2 = 0,$$ $$2x + y + 4 = 0$$ and $$x - y - 5 = 0$$ at the points $$B, C$$ and $$D$$ respectively. If $${\left( {15/AB} \right)^2} + {\left( {10/AC} \right)^2} = {\left( {6/AD} \right)^2},$$ find the equation of the line.
JEE Advanced Subjects
EXAM MAP