1
IIT-JEE 2001 Screening
+3
-0.75
Area of the parallelogram formed by the lines $$y = mx$$, $$y = mx + 1$$, $$y = nx$$ and $$y = nx + 1$$ equals
A
$$\left| {m + n} \right|/{\left( {m - n} \right)^2}$$
B
$$2/\left| {m + n} \right|$$
C
$$1/\left( {\left| {m + n} \right|} \right)$$
D
$$1/\left( {\left| {m - n} \right|} \right)$$
2
IIT-JEE 2000 Screening
+3
-0.75
Let $$PS$$ be the median of the triangle with vertices $$P(2, 2),$$ $$Q(6, -1)$$ and $$R(7, 3).$$ The equation of the line passing through $$(1, -1)$$ and parallel to $$PS$$ is
A
$$2x - 9y - 7 = 0$$
B
$$2x - 9y - 11 = 0$$
C
$$2x + 9y - 11 = 0$$
D
$$2x + 9y + 7 = 0$$
3
IIT-JEE 2000 Screening
+3
-0.75
The incentre of the triangle with vertices $$\left( {1,\,\sqrt 3 } \right),\left( {0,\,0} \right)$$ and $$\left( {2,\,0} \right)$$ is
A
$$\left( {1,\,{{\sqrt 3 } \over 2}} \right)$$
B
$$\left( {{2 \over 3},\,{1 \over {\sqrt 3 }}} \right)$$
C
$$\left( {{2 \over 3},\,{{\sqrt 3 } \over 2}} \right)$$
D
$$\left( {1,\,{1 \over {\sqrt 3 }}} \right)$$
4
IIT-JEE 1999
+2
-0.5
Lt $$PQR$$ be a right angled isosceles triangle, right angled at $$P(2, 1)$$. If the equation of the line $$QR$$ is $$2x + y = 3,$$ then the equation representing the pair of lines $$PQ$$ and $$PR$$ is
A
$$3{x^2} - 3{y^2} + 8xy + 20x + 10y + 25 = 0$$
B
$$3{x^2} - 3{y^2} + 8xy - 20x - 10y + 25 = 0$$
C
$$3{x^2} - 3{y^2} + 8xy + 10x + 15y + 20 = 0$$
D
$$3{x^2} - 3{y^2} - 8xy - 10x - 15y - 20 = 0$$
EXAM MAP
Medical
NEET