$\mathbf{a}$ and $\mathbf{b}$ are non-collinear vectors. If $p=(2 x+1) a-b$ and $q=(x-2) a+b$ are collinear vectors, then $x=$
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non-coplanar vectors and $p=\frac{\mathbf{b} \times \mathbf{c}}{[a b c]}, q=\frac{\mathbf{c} \times \mathbf{a}}{[a b c]}, r=\frac{\mathbf{a} \times \mathbf{b}}{[a b c]}$, then $\mathbf{a} \cdot \mathbf{p}+\mathbf{b} \cdot \mathbf{q}+\mathbf{c} \cdot \mathbf{r}=$
Let $$G$$ be the centroid of a $$\triangle A B C$$ and $$\mathrm{O}_{b_\theta}$$ other point in that plane, then $$\mathrm{OA}+\mathrm{OB}+\mathrm{OC}+\mathrm{CG}=$$
If the volume of the parallelopiped whose conterminus edges are along the vectors $$\mathbf{a}, \mathbf{b}, \mathbf{c}$$ is 12, then the volume of the tetrahedron whose conterminus edges are $$\mathbf{a}+\mathbf{b}, \mathbf{b}+\mathbf{c}$$ and $$c+a$$ is