1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ be such that $|\bar{a}|=2,|\bar{b}|=4$ and $|\bar{c}|=4$. If the projection of $\bar{b}$ on $\bar{a}$ is equal to the projection of $\bar{c}$ on $\bar{a}$ and $\bar{b}$ is perpendicular to $\bar{c}$, then the value of $|\vec{a}+\bar{b}-\bar{c}|$ is

A
$2\sqrt5$
B
6
C
4
D
$4\sqrt2$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ be three non-zero vectors such that no two of them are collinear and $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\frac{1}{3}|\overline{\mathrm{~b}}||\mathrm{c}| \overline{\mathrm{a}}$. If $\theta$ is the angle between vectors $\bar{b}$ and $\bar{c}$, then the value of $\sin \theta$ is

A
$\frac{2}{3}$
B
$\frac{-2 \sqrt{2}}{3}$
C
$\frac{2 \sqrt{2}}{3}$
D
$\frac{-\sqrt{2}}{3}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $\left[\begin{array}{lll}\overline{\mathrm{a}} \times \overline{\mathrm{b}} & \overline{\mathrm{b}} \times \overline{\mathrm{c}} & \overline{\mathrm{c}} \times \overline{\mathrm{a}}\end{array}\right]=\lambda\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]^2$, then $\lambda$ is equal to

A
3
B
0
C
1
D
2
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If the vectors $\overline{A B}=3 \hat{i}+4 \hat{k}$ and $\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of the triangle $A B C$, then the length of the median, through $A$, is

A
$\sqrt{45}$ units.
B
 $\sqrt{18}$ units.
C
$\sqrt{72}$ units.
D
$\sqrt{33}$ units
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12