1
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The scalar product of vectors $$\overline{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$$ and a unit vector along the sum of vectors $$\bar{b}=2 \hat{i}-4 \hat{j}+5 \hat{k}$$ and $$\bar{c}=\lambda \hat{i}+2 \hat{j}-3 \hat{k}$$ is one, then the value of $$\lambda$$ is

A
1
B
$$-2$$
C
$$-3$$
D
2
2
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\hat{\mathrm{a}}$$ and $$\hat{\mathrm{b}}$$ are unit vectors and $$\overline{\mathrm{c}}=\hat{\mathrm{b}}-(\hat{\mathrm{a}} \times \overline{\mathrm{c}})$$, then minimum value of $$[\hat{a} \hat{b} \bar{c}]$$ is

A
0
B
$$\frac{1}{2}$$
C
$$-\frac{1}{2}$$
D
1
3
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\bar{a}=2 \hat{i}+3 \hat{j}-4 \hat{k}$$ and $$\bar{b}=\hat{i}-\hat{j}-\hat{k}$$, then the projection of $$\bar{b}$$ in the direction of $$\bar{a}$$ is

A
$$\frac{1}{\sqrt{29}}$$
B
$$\frac{2}{\sqrt{3}}$$
C
$$\frac{5}{\sqrt{3}}$$
D
$$\frac{3}{\sqrt{29}}$$
4
MHT CET 2023 13th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A vector $$\bar{a}$$ has components 1 and $$2 p$$ with respect to a rectangular Cartesian system. This system is rotated through a certain angle about origin in the counter clock wise sense. If, with respect to the new system, $$\bar{a}$$ has components 1 and $$(p+1)$$, then

A
$$\mathrm{p}=1$$ or $$\mathrm{p}=\frac{1}{3}$$
B
$$\mathrm{p}=-1$$ or $$\mathrm{p}=\frac{-1}{3}$$
C
$$\mathrm{p}=\frac{-1}{3}$$ or $$\mathrm{p}=1$$
D
$$\mathrm{p}=\frac{1}{3}$$ or $$\mathrm{p}=-1$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12