If $$\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$$ and $$\overline{\mathrm{c}}=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}$$ are such that $$(\bar{a}+\lambda \bar{b})$$ is perpendicular to $$\bar{c}$$, then the value of $$\lambda$$ is
The vector projection of $$\overline{\mathrm{AB}}$$ on $$\overline{\mathrm{CD}}$$, where $$A \equiv(2,-3,0), B \equiv(1,-4,-2), C \equiv(4,6,8)$$ and $$\mathrm{D} \equiv(7,0,10)$$, is
The vectors are $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\bar{a} \cdot \bar{c}=|\bar{c}|$$ and $$|\bar{c}-\bar{a}|=2 \sqrt{2}$$, angle between $$\bar{a} \times \bar{b}$$ and $$\bar{c}$$ is $$\frac{\pi}{4}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|$$ is
If $$\bar{a}=\hat{i}+2 \hat{j}+\hat{k}, \bar{b}=\hat{i}-\hat{j}+\hat{k}, \bar{c}=\hat{i}+\hat{j}-\hat{k}$$, then a vector in the plane of $$\bar{a}$$ and $$\bar{b}$$, whose projection on $$\overline{\mathrm{c}}$$ is $$\frac{1}{\sqrt{3}}$$, is