If $\overline{\mathrm{a}}$ is perpendicular to $\bar{b}$ and $\bar{c},|\bar{a}|=2$, $|\overline{\mathrm{b}}|=3,|\overline{\mathrm{c}}|=4$ and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{3}$, then $\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]=$
If $\bar{a}=2 \hat{i}-\hat{j}+\hat{k}, \bar{b}=\hat{i}+\hat{j}-2 \hat{k}$ and $\bar{c}=4 \hat{i}-2 \hat{j}+\hat{k}$, then the unit vector in the direction of $3 \overline{\mathrm{a}}+\overline{\mathrm{b}}-2 \overline{\mathrm{c}}$ is
If $\bar{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \quad \bar{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\bar{c}=3 \hat{i}+\hat{j}$ are the vectors such that $\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$ is perpendicular to $\bar{c}$, then value of $\lambda$ is
If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are three vectors such that $\overline{\mathrm{a}} \neq \overline{0}$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=2 \overline{\mathrm{a}} \times \overline{\mathrm{c}},|\overline{\mathrm{a}}|=|\overline{\mathrm{c}}|=1,|\overline{\mathrm{~b}}|=4$ and $|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|=\sqrt{15}$. If $\overline{\mathrm{b}}-2 \overline{\mathrm{c}}=\lambda \overline{\mathrm{a}}$, then $\lambda$ is