1
MHT CET 2021 21th September Evening Shift
+2
-0

If $${\pi \over 2} < \theta < \pi$$ and $$|\overline a | = 5,|\overline b | = 13,|\overline a \times \overline b | = 25$$, then the value of $$\overline a \,.\,\overline b$$ is

A
$$-$$12
B
60
C
$$-$$60
D
$$-$$13
2
MHT CET 2021 21th September Evening Shift
+2
-0

If $$|\bar{a} \times \bar{b}|^2+(\bar{a} \cdot \bar{b})^2=144$$ and $$|\bar{a}|=4$$, then $$|\bar{b}|=$$

A
8
B
12
C
3
D
16
3
MHT CET 2021 21th September Morning Shift
+2
-0

The distance between parallel lines

\begin{aligned} & \bar{r}=(2 \hat{i}-\hat{j}+\hat{k})+\lambda(2 \hat{i}+\hat{j}-2 \hat{k}) \text { and } \\ & \bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+\hat{j}-2 \hat{k}) \text { is } \end{aligned}

A
$$\sqrt{2}$$
B
$$\frac{1}{3}$$ units
C
$$\frac{1}{\sqrt{3}}$$ units
D
$$\frac{\sqrt{2}}{3}$$ units
4
MHT CET 2021 21th September Morning Shift
+2
-0

The vertices of triangle $$\mathrm{ABC}$$ are $$\mathrm{A} \equiv(3,0,0) ; \mathrm{B} \equiv(0,0,4) ; \mathrm{C} \equiv(0,5,4)$$. Find the position vector of the point in which the bisector of angle A meets B C is

A
$$5 \hat{\mathrm{i}}+12 \hat{\mathrm{j}}$$
B
$$\frac{5 \hat{\mathrm{j}}+12 \hat{\mathrm{k}}}{3}$$
C
$$\frac{5 \hat{\mathrm{i}}+12 \hat{\mathrm{j}}}{13}$$
D
$$\frac{5 \hat{\mathrm{i}}-12 \hat{\mathrm{j}}}{3}$$
EXAM MAP
Medical
NEETAIIMS