1
MHT CET 2023 13th May Morning Shift
+2
-0

If $$\theta$$ is angle between the vectors $$\bar{a}$$ and $$\bar{b}$$ where $$|\bar{a}|=4,|\bar{b}|=3$$ and $$\theta \in\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$$, then $$|(\bar{a}-\bar{b}) \times(\bar{a}+\bar{b})|^2+4(\bar{a} \cdot \bar{b})^2$$ has the value

A
576
B
24
C
144
D
12
2
MHT CET 2023 12th May Evening Shift
+2
-0

$$A, B, C, D$$ are four points in a plane with position vectors $$\bar{a}, \bar{b}, \bar{c}, \bar{d}$$ respectively such that $$(\bar{a}-\bar{d}) \cdot(\bar{b}-\bar{c})=(\bar{b}-\bar{d}) \cdot(\bar{c}-\bar{a})=0$$. The point $$D$$, then is the ___________ of $$\triangle \mathrm{ABC}$$

A
centroid
B
circumcentre
C
incentre
D
orthocentre
3
MHT CET 2023 12th May Evening Shift
+2
-0

Two adjacent of sides parallelogram $$\mathrm{ABCD}$$ are given by $$\overline{\mathrm{AB}}=2 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}+11 \hat{\mathrm{k}}$$ and $$\overline{A D}=-\hat{i}+2 \hat{j}+2 \hat{k}$$. The side $$A D$$ is rotated by angle $$\alpha$$ in plane of parallelogram so that $$\mathrm{AD}$$ becomes $$\mathrm{AD}^{\prime}$$. If $$\mathrm{AD}^{\prime}$$ makes a right angle with the side $$A B$$, then the cosine of the angle $$\alpha$$ is given by

A
$$\frac{8}{9}$$
B
$$\frac{1}{9}$$
C
$$\frac{\sqrt{17}}{9}$$
D
$$\frac{4 \sqrt{5}}{9}$$
4
MHT CET 2023 12th May Evening Shift
+2
-0

The unit vector which is orthogonal to the vector $$3 \hat{i}+2 \hat{j}+6 \hat{k}$$ and coplanar with the vectors $$2 \hat{i}+\hat{j}+\hat{k}$$ and $$\hat{i}+\hat{j}+\hat{k}$$ is

A
$$\frac{8 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}}{\sqrt{82}}$$
B
$$\frac{-8 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}}{\sqrt{82}}$$
C
$$\frac{-8 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}}{\sqrt{82}}$$
D
$$-\frac{8 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}}{\sqrt{82}}$$
EXAM MAP
Medical
NEET