1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $\overline{A B}=3 \hat{i}+4 \hat{k}$ and $\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of the triangle $A B C$, then the length of the median, through $A$, is

A
$\sqrt{45}$ units.
B
 $\sqrt{18}$ units.
C
$\sqrt{72}$ units.
D
$\sqrt{33}$ units
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}$ and $\bar{b}$ are two unit vectors such that $\bar{a}+2 \bar{b}$ and $5 \overline{\mathrm{a}}-4 \overline{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\bar{a}$ and $\bar{b}$ is

A
$\frac{\pi}{4}$
B
$\frac{\pi}{3}$
C
$\cos ^{-1}\left(\frac{1}{3}\right)$
D
$\cos ^{-1}\left(\frac{3}{7}\right)$
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $P, Q, R$ and $S$ be the points on the plane with position vectors $-2 \hat{i}-\hat{j}, 4 \hat{i}, 3 \hat{i}+3 \hat{j}$ and $-3 \hat{i}+2 \hat{j}$ respectively. Then the quadrilateral PQRS must be a

A
parallelogram, which is neither a rhombus nor a rectangle.
B
square.
C
rectangle, but not a square.
D
rhombus, but not a square.
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the points $\mathrm{P}, \mathrm{Q}$ and R are with the position vectors $\hat{i}-2 \hat{j}+3 \hat{k},-2 \hat{i}+3 \hat{j}+2 \hat{k}$ and $-8 \hat{i}+13 \hat{j}$ respectively, then these points are

A
collinear and $Q$ lies between $P$ and $R$.
B
collinear and $R$ lies between $P$ and $Q$.
C
collinear and $P$ lies between $Q$ and $R$.
D
non-collinear.
MHT CET Subjects
EXAM MAP