1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$, and $\overline{\mathrm{c}}$ be three non-zero vectors such that no two of these are collinear. If the vector $\bar{a}+2 \bar{b}$ is collinear with $\bar{c}$ and $\bar{b}+3 \bar{c}$ is collinear with $\overline{\mathrm{a}}$, then $\overline{\mathrm{a}}+2 \overline{\mathrm{~b}}+6 \overline{\mathrm{c}}$ equals

A
$\lambda \bar{c}(\lambda$ being some non-zero scalar)
B
$\overline{\mathrm{b}}(\lambda$ being some non-zero scalar)
C
$\lambda \overline{\mathrm{a}}$ ( $\lambda$ being some non-zero scalar)
D
$\overline{0}$ ( $\lambda$ being some non-zero scalar)
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar unit vectors such that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{(\overline{\mathrm{b}}+\overline{\mathrm{c}})}{\sqrt{2}}$ then the angle between $\overline{\mathrm{a}}$ and $\bar{b}$ is

A
$\frac{3 \pi}{4}$
B
$\frac{\pi}{4}$
C
$\frac{\pi}{2}$
D
$\pi$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of unit vectors perpendicular to $\overline{\mathrm{a}}=(1,1,0)$ and $\overline{\mathrm{b}}=(0,1,1)$ is

A
one.
B
two.
C
three.
D
infinite.
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\lambda \hat{\mathrm{i}}+\hat{\mathrm{j}}+\mu \hat{\mathrm{k}}$ are mutually orthogonal, then $(\lambda, \mu) \equiv$

A
$(-3,2)$
B
$(2,-3)$
C
$(-2,3)$
D
$(3,-2)$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12