$$\overline{\mathrm{a}}, \overline{\mathrm{b}}$$ and $$\overline{\mathrm{c}}$$ are three vectors such that $$\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$$ and $$|\overline{\mathrm{a}}|=3,|\overline{\mathrm{b}}|=5,|\overline{\mathrm{c}}|=7$$, then the angle between $$\overline{\mathrm{a}}$$ and $$\bar{b}$$ is
If area of the parallelogram with $$\bar{a}$$ and $$\bar{b}$$ as two adjacent sides is 20 square units, then the area of the parallelogram having $$3 \overline{\mathrm{a}}+\overline{\mathrm{b}}$$ and $$2 \overline{\mathrm{a}}+3 \overline{\mathrm{b}}$$ as two adjacent sides in square units is
If $$\bar{r}=-4 \hat{i}-6 \hat{j}-2 \hat{k}$$ is a linear combination of the vectors $$\bar{a}=-\hat{i}+4 \hat{j}+3 \hat{k}$$ and $$\bar{b}=-8 \hat{i}-\hat{j}+3 \hat{k}$$, then
If the volume of a tetrahedron whose conterminous edges are $$\vec{\mathrm{a}}+\vec{\mathrm{b}}, \vec{\mathrm{b}}+\vec{\mathrm{c}}, \vec{\mathrm{c}}+\vec{\mathrm{a}}$$ is 24 cubic units, then the volume of parallelopiped whose coterminous edges are $$\vec{\mathrm{a}}, \vec{\mathrm{b}}, \vec{\mathrm{c}}$$ is