1
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$[\vec{a}\ \vec{b}\ \vec{c}\ ] \neq 0$$, then $$\frac{[\vec{a}\ +\vec{b}\ \vec{b}\ +\vec{c}\ \vec{c}\ +\vec{a}\ ]}{[\vec{b}\ \vec{c}\ \vec{a}\ ]}=$$

A
1
B
0
C
4
D
2
2
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the scalar triple product of the vectors $-3 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}, 3 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}$ and $7 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ is 272 then $\lambda=\ldots \ldots$

A
9
B
11
C
8
D
10
3
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\mathbf{a}$ and $\mathbf{b}$ are non-collinear vectors. If $\mathbf{c}=(x-2) \mathbf{a}+\mathbf{b}$ and $\mathbf{d}=(2 x+1) \mathbf{a}-\mathbf{b}$ are collinear vectors, then the value of $x=\ldots \ldots$

A
$\frac{1}{2}$
B
$\frac{1}{4}$
C
$\frac{1}{5}$
D
$\frac{1}{3}$
4
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

For any non zero vector, a, b, c $\mathbf{a} \cdot[(\mathbf{b}+\mathbf{c}) \times(\mathbf{a}+\mathbf{b}+\mathbf{c})]=$ ..........

A
0
B
$2[a b c]$
C
$[a b c]$
D
$[\mathrm{a} \mathrm{c}\mathrm{b}]$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12