1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}=3 \hat{i}-\alpha \hat{j}+\hat{k}$ and $\bar{b}=\hat{i}+\alpha \hat{j}+3 \hat{k}$. If the area of the parallelogram whose adjacent sides are represented by the vectors $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, is $8 \sqrt{3}$ sq. units, then $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$ is equal to

A
1
B
2
C
3
D
4
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\hat{a}$ and $\hat{b}$ be two unit vectors. If the vectors $\overline{\mathrm{c}}=\hat{\mathrm{a}}+2 \hat{\mathrm{~b}}$ and $\overline{\mathrm{d}}=5 \hat{\mathrm{a}}+4 \hat{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\hat{a}$ and $\hat{b}$ is

A
$\frac{\pi}{6}$
B
$\cos ^{-1}\left(\frac{13}{14}\right)$
C
$\frac{\pi}{3}$
D
$\cos ^{-1}\left(\frac{-13}{14}\right)$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}, \hat{i}+\hat{j}+c \hat{k}$ $(a \neq b, c \neq 1)$ are coplanar, then $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ has the value __________.

A
1
B
$-$1
C
$-$2
D
5
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are three non-coplanar vectors, then $(\bar{a}+\bar{b}+\bar{c}) \cdot[(\bar{a}+\bar{b}) \times(\bar{a}+\bar{c})]$ equals

A
0
B
$[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$
C
$2[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$
D
$-[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$
MHT CET Subjects
EXAM MAP