1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}=3 \hat{i}-\alpha \hat{j}+\hat{k}$ and $\bar{b}=\hat{i}+\alpha \hat{j}+3 \hat{k}$. If the area of the parallelogram whose adjacent sides are represented by the vectors $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, is $8 \sqrt{3}$ sq. units, then $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$ is equal to

A
1
B
2
C
3
D
4
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\hat{a}$ and $\hat{b}$ be two unit vectors. If the vectors $\overline{\mathrm{c}}=\hat{\mathrm{a}}+2 \hat{\mathrm{~b}}$ and $\overline{\mathrm{d}}=5 \hat{\mathrm{a}}+4 \hat{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\hat{a}$ and $\hat{b}$ is

A
$\frac{\pi}{6}$
B
$\cos ^{-1}\left(\frac{13}{14}\right)$
C
$\frac{\pi}{3}$
D
$\cos ^{-1}\left(\frac{-13}{14}\right)$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}, \hat{i}+\hat{j}+c \hat{k}$ $(a \neq b, c \neq 1)$ are coplanar, then $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ has the value __________.

A
1
B
$-$1
C
$-$2
D
5
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are three non-coplanar vectors, then $(\bar{a}+\bar{b}+\bar{c}) \cdot[(\bar{a}+\bar{b}) \times(\bar{a}+\bar{c})]$ equals

A
0
B
$[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$
C
$2[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$
D
$-[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12