1
MHT CET 2021 21th September Morning Shift
+2
-0

If $$|\bar{a}|=3,|\bar{b}|=4,|\bar{a}-\bar{b}|=5$$, then $$|\bar{a}+\bar{b}|=$$

A
9
B
25
C
5
D
4
2
MHT CET 2021 20th September Evening Shift
+2
-0

$$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$$ are vectors such that $$|\overline{\mathrm{a}}|=5,|\overline{\mathrm{b}}|=4,|\overline{\mathrm{c}}|=3$$ and each is perpendicular to the sum of the other two, then $$|\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}|^2=$$

A
60
B
12
C
47
D
50
3
MHT CET 2021 20th September Evening Shift
+2
-0

If $$[\bar{a} \bar{b} \bar{c}]=4$$, then the volume (in cubic units) of the parallelopiped with $$\bar{a}+2 \bar{b}, \bar{b}+2 \bar{c}$$ and $$\overline{\mathrm{c}}+2 \overline{\mathrm{a}}$$ as coterminal edges, is

A
32
B
16
C
9
D
36
4
MHT CET 2021 20th September Evening Shift
+2
-0

$$\overline{\mathrm{a}}, \overline{\mathrm{b}}$$ and $$\overline{\mathrm{c}}$$ are three vectors such that $$\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$$ and $$|\overline{\mathrm{a}}|=3,|\overline{\mathrm{b}}|=5,|\overline{\mathrm{c}}|=7$$, then the angle between $$\overline{\mathrm{a}}$$ and $$\bar{b}$$ is

A
$$\frac{\pi}{4}$$
B
$$\frac{\pi}{2}$$
C
$$\frac{\pi}{3}$$
D
$$\frac{\pi}{6}$$
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination