If the vectors $$\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+m \hat{\mathbf{k}}$$ are coplanar, then $$m=$$
The angles between the lines $$\mathbf{r}=(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}) \text { and } \mathbf{r}=(3 \hat{\mathbf{i}}+\hat{\mathbf{k}})+\lambda^{\prime}(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}), \lambda, \lambda^{\prime} \in \mathbf{R}$$ is
In a quadrilateral $$ABCD, M$$ and $$N$$ are the mid-points of the sides $$A B$$ and $$C D$$ respectively. If $$\mathbf{A D}+\mathbf{B C}=t \mathbf{M N}$$, then $$t=$$
If $$[\vec{a}\ \vec{b}\ \vec{c}\ ] \neq 0$$, then $$\frac{[\vec{a}\ +\vec{b}\ \vec{b}\ +\vec{c}\ \vec{c}\ +\vec{a}\ ]}{[\vec{b}\ \vec{c}\ \vec{a}\ ]}=$$