If $$[(\bar{a}+2 \bar{b}+3 \bar{c}) \times(\bar{b}+2 \bar{c}+3 \bar{a})] \cdot(\bar{c}+2 \bar{a}+3 \bar{b})=54$$ then the value of $$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$$ is
The volume of parallelopiped, whose coterminous edges are given by $$\overline{\mathrm{u}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\lambda \hat{\mathrm{k}}, \vec{v}=\hat{i}+\hat{j}+3 \hat{k}, \bar{w}=2 \hat{i}+\hat{j}+\hat{k}$$ is 1 cu. units. If $$\theta$$ is the angle between $$\bar{u}$$ and $$\bar{w}$$, then the value of $$\cos \theta$$ is
If $$\bar{a}=\hat{\boldsymbol{i}}-\hat{\boldsymbol{k}}, \bar{b}=x \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}+(1-x) \hat{\boldsymbol{k}}$$ and $$\bar{c}=y \hat{\boldsymbol{i}}+x \hat{\boldsymbol{j}}+(1+x-y) \hat{\boldsymbol{k}}$$, then $$[\bar{a} \bar{b} \bar{c}]$$ depends on
Let $$\bar{a}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$$ and $$\bar{b}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}$$ be two vectors. If $$\bar{c}$$ is a vector such that $$\bar{b} \times \bar{c}=\bar{b} \times \bar{a}$$ and $$\bar{c} \cdot \bar{a}=0$$, then $$\bar{c} \cdot \bar{b}$$ is equal to