If the area of the parallelogram with $\bar{a}$ and $\bar{b}$ as two adjacent sides is 15 square units, then the area (in square units) of the parallelogram, having $3 \bar{a}+2 \bar{b}$ and $\bar{a}+3 \bar{b}$ as two adjacent sides, is
If $\bar{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\bar{b}=2 \hat{i}+3 \hat{j}-\hat{k}$, then the angle between the vectors $(2 \bar{a}+\bar{b})$ and $(\overline{\mathrm{a}}+2 \overline{\mathrm{~b}})$ is
If $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar vectors and $\overline{\mathrm{p}}=\frac{\overline{\mathrm{b}} \times \overline{\mathrm{c}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \overline{\mathrm{q}}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \overline{\mathrm{r}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$, then $2 \overline{\mathrm{a}} \cdot \overline{\mathrm{p}}+\overline{\mathrm{b}} \cdot \overline{\mathrm{q}}+\overline{\mathrm{c}} \cdot \overline{\mathrm{r}}=$
The incenter of the triangle ABC , whose vertices are $\mathrm{A}(0,2,1), \mathrm{B}(-2,0,0)$ and $\mathrm{C}(-2,0,2)$ is