Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$. Let $\overline{\mathrm{c}}$ be a vector such that $|\bar{c}-\bar{a}|=3$ and $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|=3$ and the angle between $\overline{\mathrm{c}}$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is $30^{\circ}$, then $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$ is equal to
The scalar $\overline{\mathrm{a}} \cdot[(\overline{\mathrm{b}}+\overline{\mathrm{c}}) \times(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}})]$ equals
The volume of parallelopiped formed by vectors $\hat{i}+m \hat{j}+\hat{k}, \hat{j}+m \hat{k}$ and $m \hat{i}+\hat{k}$ becomes minimum when $m$ is
If the vectors $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\mathrm{mi}+\mathrm{j}+\mathrm{nk}$ are mutually perpendicular, then $(\mathrm{m}, \mathrm{n})$ is