1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$. Let $\overline{\mathrm{c}}$ be a vector such that $|\bar{c}-\bar{a}|=3$ and $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|=3$ and the angle between $\overline{\mathrm{c}}$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is $30^{\circ}$, then $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$ is equal to

A
$2$
B
$-\frac{1}{8}$
C
$\frac{25}{8}$
D
$5$
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The scalar $\overline{\mathrm{a}} \cdot[(\overline{\mathrm{b}}+\overline{\mathrm{c}}) \times(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}})]$ equals

A
$0$
B
$[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]+[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{a}}]$
C
$[\bar{a} \bar{b} \bar{c}]$
D
$1$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The volume of parallelopiped formed by vectors $\hat{i}+m \hat{j}+\hat{k}, \hat{j}+m \hat{k}$ and $m \hat{i}+\hat{k}$ becomes minimum when $m$ is

A
2
B
3
C
$\sqrt{3}$
D
$\frac{1}{\sqrt{3}}$
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\mathrm{mi}+\mathrm{j}+\mathrm{nk}$ are mutually perpendicular, then $(\mathrm{m}, \mathrm{n})$ is

A
$(3,-2)$
B
$(-2,3)$
C
$(2,-3)$
D
$(-3,2)$
MHT CET Subjects
EXAM MAP