If the volume of a tetrahedron whose conterminous edges are $$\vec{\mathrm{a}}+\vec{\mathrm{b}}, \vec{\mathrm{b}}+\vec{\mathrm{c}}, \vec{\mathrm{c}}+\vec{\mathrm{a}}$$ is 24 cubic units, then the volume of parallelopiped whose coterminous edges are $$\vec{\mathrm{a}}, \vec{\mathrm{b}}, \vec{\mathrm{c}}$$ is

If $$\overline{\mathrm{e}}_1, \overline{\mathrm{e}}_2$$ and $$\overline{\mathrm{e}}_1+\overline{\mathrm{e}}_2$$ are unit vectors, then the angle between $$\overline{\mathrm{e}}_1$$ and $$\overline{\mathrm{e}}_2$$ is

If $$\overline{\mathrm{a}}, \overline{\mathrm{b}} , \overline{\mathrm{c}}$$ are three vectors which are perpendicular to $$\overline{\mathrm{b}}+\overline{\mathrm{c}}, \overline{\mathrm{c}}+\overline{\mathrm{a}}$$ and $$\overline{\mathrm{a}}+\overline{\mathrm{b}}$$ respectively, such that $$|\bar{a}|=2,|\bar{b}|=3,|\bar{c}|=4$$, then $$|\bar{a}+\bar{b}+\bar{c}|=$$

$$(2 \hat{\mathrm{i}}+6 \hat{\mathrm{i}}+27 \hat{\mathrm{k}}) \times(\hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+\mu \hat{\mathrm{k}})=\overline{0}$$, then $$\lambda$$ and $$\mu$$ are respectively