1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area (in sq. units) of the parallelogram whose diagonals are along the vectors $8 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}$ and $3 \hat{i}+4 \hat{j}-12 \hat{k}$, is

A
52
B
26
C
65
D
20
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $|\bar{a}|=\sqrt{27},|\bar{b}|=7$ and $|\bar{a} \times \bar{b}|=35$, then $\bar{a} \cdot \bar{b}$ is equal to

A
$\sqrt{\frac{35}{2}}$
B
$\frac{\sqrt{35}}{2}$
C
$7 \sqrt{2}$
D
$\sqrt{35}$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{A} \equiv(1,-1,0), \mathrm{B} \equiv(0,1,-1)$ and $\mathrm{C} \equiv(-1,0,1)$, then the unit vector $\overline{\mathrm{d}}$ such that $\overline{\mathrm{a}}$ and $\overline{\mathrm{d}}$ are perpendiculars and $\overline{\mathrm{b}}, \overline{\mathrm{c}}, \overline{\mathrm{d}}$ are coplanar is

A
$+\frac{1}{\sqrt{3}}(1,1,1)$
B
$+\frac{1}{\sqrt{3}}(-1,-1,1)$
C
$+\frac{1}{\sqrt{6}}(1,1,-2)$
D
$+\frac{1}{\sqrt{2}}(1,1,0)$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ be such that $|\overline{\mathrm{a}}|=2,|\overline{\mathrm{~b}}|=4$ and $|\bar{c}|=4$. If the projection of $\bar{b}$ on $\bar{a}$ is equal to the projection of $\overline{\mathrm{c}}$ on $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is perpendicular to $\overline{\mathrm{c}}$, then the value of $|\overline{\mathrm{a}}+\overline{\mathrm{b}}-\overline{\mathrm{c}}|$ is equal to

A
$2\sqrt5$
B
6
C
4
D
$4\sqrt2$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12