1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area (in sq. units) of the parallelogram whose diagonals are along the vectors $8 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}$ and $3 \hat{i}+4 \hat{j}-12 \hat{k}$, is

A
52
B
26
C
65
D
20
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $|\bar{a}|=\sqrt{27},|\bar{b}|=7$ and $|\bar{a} \times \bar{b}|=35$, then $\bar{a} \cdot \bar{b}$ is equal to

A
$\sqrt{\frac{35}{2}}$
B
$\frac{\sqrt{35}}{2}$
C
$7 \sqrt{2}$
D
$\sqrt{35}$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{A} \equiv(1,-1,0), \mathrm{B} \equiv(0,1,-1)$ and $\mathrm{C} \equiv(-1,0,1)$, then the unit vector $\overline{\mathrm{d}}$ such that $\overline{\mathrm{a}}$ and $\overline{\mathrm{d}}$ are perpendiculars and $\overline{\mathrm{b}}, \overline{\mathrm{c}}, \overline{\mathrm{d}}$ are coplanar is

A
$+\frac{1}{\sqrt{3}}(1,1,1)$
B
$+\frac{1}{\sqrt{3}}(-1,-1,1)$
C
$+\frac{1}{\sqrt{6}}(1,1,-2)$
D
$+\frac{1}{\sqrt{2}}(1,1,0)$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ be such that $|\overline{\mathrm{a}}|=2,|\overline{\mathrm{~b}}|=4$ and $|\bar{c}|=4$. If the projection of $\bar{b}$ on $\bar{a}$ is equal to the projection of $\overline{\mathrm{c}}$ on $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is perpendicular to $\overline{\mathrm{c}}$, then the value of $|\overline{\mathrm{a}}+\overline{\mathrm{b}}-\overline{\mathrm{c}}|$ is equal to

A
$2\sqrt5$
B
6
C
4
D
$4\sqrt2$
MHT CET Subjects
EXAM MAP