If $$(\bar{a} \times \bar{b}) \times \bar{c}=-5 \bar{a}+4 \bar{b}$$ and $$\bar{a} \cdot \bar{b}=3$$, then the value of $$\bar{a} \times(\bar{b} \times \bar{c})$$ is
If $$\bar{p}=\hat{i}+\hat{j}+\hat{k}$$ and $$\bar{q}=\hat{i}-2 \hat{j}+\hat{k}$$. Then a vector of magnitude $$5 \sqrt{3}$$ units perpendicular to the vector $$\bar{q}$$ and coplanar with $$\bar{p}$$ and $$\bar{q}$$ is
If $$\bar{a}$$ and $$\bar{b}$$ are two unit vectors such that $$\bar{a}+2 \bar{b}$$ and $$5 \bar{a}-4 \bar{b}$$ are perpendicular to each other, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is
If $$\overline{\mathrm{a}}=\mathrm{m} \overline{\mathrm{b}}+\mathrm{nc}$$, where $$\overline{\mathrm{a}}=4 \hat{\mathrm{i}}+13 \hat{\mathrm{j}}-18 \hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overline{\mathrm{c}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$$, then $$\mathrm{m}+\mathrm{n}=$$