1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\left[\begin{array}{lll}\overline{\mathrm{a}} \times \overline{\mathrm{b}} & \overline{\mathrm{b}} \times \overline{\mathrm{c}} & \overline{\mathrm{c}} \times \overline{\mathrm{a}}\end{array}\right]=\lambda\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]^2$, then $\lambda$ is equal to

A
3
B
0
C
1
D
2
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $\overline{A B}=3 \hat{i}+4 \hat{k}$ and $\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of the triangle $A B C$, then the length of the median, through $A$, is

A
$\sqrt{45}$ units.
B
 $\sqrt{18}$ units.
C
$\sqrt{72}$ units.
D
$\sqrt{33}$ units
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}$ and $\bar{b}$ are two unit vectors such that $\bar{a}+2 \bar{b}$ and $5 \overline{\mathrm{a}}-4 \overline{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\bar{a}$ and $\bar{b}$ is

A
$\frac{\pi}{4}$
B
$\frac{\pi}{3}$
C
$\cos ^{-1}\left(\frac{1}{3}\right)$
D
$\cos ^{-1}\left(\frac{3}{7}\right)$
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $P, Q, R$ and $S$ be the points on the plane with position vectors $-2 \hat{i}-\hat{j}, 4 \hat{i}, 3 \hat{i}+3 \hat{j}$ and $-3 \hat{i}+2 \hat{j}$ respectively. Then the quadrilateral PQRS must be a

A
parallelogram, which is neither a rhombus nor a rectangle.
B
square.
C
rectangle, but not a square.
D
rhombus, but not a square.
MHT CET Subjects
EXAM MAP