The area of the parallelogram whose diagonals are represented by the vectors $$\bar{a}=3 \hat{i}-\hat{j}-2 \hat{k}$$ and $$\bar{b}=-\hat{i}+3 \hat{j}-3 \hat{k}$$ is
If $$\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$$ with $$|\overline{\mathrm{a}}|=3,|\overline{\mathrm{b}}|=5$$ and $$|\overline{\mathrm{c}}|=7$$, then angle between $$\overline{\mathrm{a}}$$ and $$\overline{\mathrm{b}}$$ is
If $$|\bar{u}|=2$$ and $$\bar{u}$$ makes angles of $$60^{\circ}$$ and $$120^{\circ}$$ with axes $$\mathrm{OX}$$ and $$\mathrm{OY}$$ in the origin, then $$\bar{u}=$$
If $$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$$ are mutually perpendicular vectors having magnitudes $$1,2,3$$ respectively, then $$\left[\begin{array}{lll}\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}} & \overline{\mathrm{b}}-\overline{\mathrm{a}} & \overline{\mathrm{c}}\end{array}\right]=$$