1
MHT CET 2021 24th September Evening Shift
+2
-0

For any non-zero vectors $$\bar{a}, \bar{b}, \bar{c}$$, the value of $$\bar{a} \cdot[(\bar{b} \times \bar{c}) \times(\bar{a}+\bar{b}+\bar{c})]$$ is

A
$$2[\bar{a} \bar{b} \bar{c}]$$
B
$$[\bar{a} \bar{b} \bar{c}]$$
C
$$[\bar{a} \bar{c} \bar{b}]$$
D
0
2
MHT CET 2021 24th September Evening Shift
+2
-0

If $$\bar{a}=3 \hat{i}+\hat{j}-\hat{k}, \bar{b}=2 \hat{i}-\hat{j}+23 \hat{k}$$ and $$\bar{c}=7 \hat{i}-\hat{j}+23 \hat{k}$$, then which of the following is valid.

A
$$\bar{a}, \bar{b}, \bar{c}$$ are mutually perpendicular.
B
$$\bar{a}, \bar{b}, \bar{c}$$ are non-coplanar.
C
$$\bar{a}$$ and $$\bar{b}$$ are collinear.
D
$$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$$ are coplanar.
3
MHT CET 2021 24th September Evening Shift
+2
-0

If the angle between the vectors $$\overline{\mathrm{a}}=2 \lambda^2 \hat{\mathrm{i}}+4 \lambda \hat{\mathrm{j}}+\hat{\mathrm{k}}$$ and $$\overline{\mathrm{b}}=7 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\lambda \hat{\mathrm{k}}$$ is obtuse, then $$\lambda \in$$

A
$$\left(0, \frac{1}{2}\right]$$
B
$$\left(0, \frac{1}{2}\right)$$
C
$$\left[0, \frac{1}{2}\right]$$
D
$$\left[0, \frac{1}{2}\right]$$
4
MHT CET 2021 24th September Evening Shift
+2
-0

If $$\bar{a}+\bar{b}, \bar{b}+\bar{c}, \bar{c}+\bar{a}$$ are coterminus edges of a parallelopiped, then its volume is

A
0
B
$$4[\bar{b} \overline{\mathrm{a}} \overline{\mathrm{c}}]$$
C
$$3[\bar{a} \bar{c} \bar{b}]$$
D
$$2[\bar{a} \bar{b} \bar{c}]$$
EXAM MAP
Medical
NEET