If $\bar{x}=\frac{\bar{b} \times \bar{c}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \bar{y}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$ and $\overline{\mathrm{z}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$ where $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar vectors, then value of $\bar{x} \cdot(\overline{\mathrm{a}}+\overline{\mathrm{b}})+\bar{y} \cdot(\overline{\mathrm{~b}}+\overline{\mathrm{c}})+\overline{\mathrm{z}} \cdot(\overline{\mathrm{c}}+\overline{\mathrm{a}})$ is
If $\bar{a}$ and $\bar{b}$ are two unit vectors such that $5 \bar{a}+4 \bar{b}$ and $\bar{a}-2 \bar{b}$ are perpendicular to each other, then the between $\bar{a}$ and $\bar{b}$ is
Let two non-collinear unit vectors $\hat{\mathrm{a}}$ and $\hat{\mathrm{b}}$ form an acute angle. A point P moves, so that at any time $t$ the position vector $\overline{O P}$, where $O$ is the origin, is given by $\hat{a} \cos t+\hat{b} \sin t$. When $P$ is farthest from origin O , let M be the length of $\overline{\mathrm{OP}}$ and $\hat{\mathrm{u}}$ be the unit vector along $\overline{\mathrm{OP}}$, then
If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are mutually perpendicular vectors having magnitudes $1,2,3$ respectively, then the value of $\left[\begin{array}{lll}\bar{a}+\bar{b}+\bar{c} & \bar{b}-\bar{a} & \bar{c}\end{array}\right]$ is