1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $\overline{A B}=3 \hat{i}+4 \hat{k}$ and $\overline{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of the triangle $A B C$, then the length of the median through $A$ is

A
$\sqrt{45}$ units
B
$\sqrt{18}$ units
C
$\sqrt{72}$ units
D
$\sqrt{33}$ units
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$. Then the vector $\overline{\mathrm{b}}$ satisfying $\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{c}}=\overline{0}$ and $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=3$, is

A
$-\hat{i}+\hat{j}-2 \hat{k}$
B
$2 \hat{i}-\hat{j}+2 \hat{k}$
C
$\hat{i}-\hat{j}-2 \hat{k}$
D
$\hat{i}+\hat{j}-2 \hat{k}$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area (in sq. units) of the parallelogram whose diagonals are along the vectors $8 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}$ and $3 \hat{i}+4 \hat{j}-12 \hat{k}$, is

A
52
B
26
C
65
D
20
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $|\bar{a}|=\sqrt{27},|\bar{b}|=7$ and $|\bar{a} \times \bar{b}|=35$, then $\bar{a} \cdot \bar{b}$ is equal to

A
$\sqrt{\frac{35}{2}}$
B
$\frac{\sqrt{35}}{2}$
C
$7 \sqrt{2}$
D
$\sqrt{35}$
MHT CET Subjects
EXAM MAP