If $$\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overline{\mathrm{b}}=-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{c}}=3 \hat{\mathrm{i}}+\hat{\mathrm{j}}$$ and $$\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$$ is perpendicular to $$\overline{\mathrm{c}}$$, then $$\lambda=$$
If $$3 \hat{j}, 4 \hat{k}$$ and $$3 \hat{j}+4 \hat{k}$$ are the position vectors of the vertices $$A, B, C$$ respectively of $$\triangle A B C$$, then the position vector of the point in which the bisector of $$\angle \mathrm{A}$$ meets $$\mathrm{BC}$$ is
If the vectors $$2 \hat{i}-\hat{j}-\hat{k} ; \hat{i}+2 \hat{j}-3 \hat{k}$$ and $$3 \hat{i}+\lambda \hat{j}+5 \hat{k}$$ are coplanar, then the value of $$\lambda$$ is
The vector equation of the line whose Cartesian equations are $$y=2$$ and $$4 x-3 z+5=0$$ is