$$(2 \hat{\mathrm{i}}+6 \hat{\mathrm{i}}+27 \hat{\mathrm{k}}) \times(\hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+\mu \hat{\mathrm{k}})=\overline{0}$$, then $$\lambda$$ and $$\mu$$ are respectively
If $\mathbf{a}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}, \mathbf{b}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+7 \hat{\mathbf{k}}$ and $\mathbf{c}=7 \hat{\mathbf{i}}-\hat{\mathbf{j}}+23 \hat{\mathbf{k}}$ are three vectors, then which of the following statement is true.
$\mathbf{a}$ and $\mathbf{b}$ are non-collinear vectors. If $p=(2 x+1) a-b$ and $q=(x-2) a+b$ are collinear vectors, then $x=$
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non-coplanar vectors and $p=\frac{\mathbf{b} \times \mathbf{c}}{[a b c]}, q=\frac{\mathbf{c} \times \mathbf{a}}{[a b c]}, r=\frac{\mathbf{a} \times \mathbf{b}}{[a b c]}$, then $\mathbf{a} \cdot \mathbf{p}+\mathbf{b} \cdot \mathbf{q}+\mathbf{c} \cdot \mathbf{r}=$