1
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \bar{b}=\hat{i}+\hat{j}$$ and $$\bar{c}$$ be a vector such that $$|\bar{c}-\bar{a}|=4,|(\bar{a} \times \bar{b}) \times \bar{c}|=3$$ and the angle between $$\overline{\mathrm{c}}$$ and $$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$ is $$\frac{\pi}{6}$$, then $$\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$$ is equal to

A
$$-3$$
B
$$\frac{3}{2}$$
C
3
D
$$\frac{-3}{2}$$
2
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the area of the parallelogram with $$\bar{a}$$ and $$\bar{b}$$ as two adjacent sides is $$16 \mathrm{sq}$$. units, then the area of the parallelogram having $$3 \overline{\mathrm{a}}+2 \overline{\mathrm{b}}$$ and $$\overline{\mathrm{a}}+3 \overline{\mathrm{b}}$$ as two adjacent sides (in sq. units) is

A
96
B
112
C
144
D
128
3
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$$ and $$\overline{\mathrm{c}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}$$ are such that $$\bar{a}+\lambda \bar{b}$$ is perpendicular to $$\bar{c}$$, then the value of $$\lambda$$ is

A
$$\frac{-1}{5}$$
B
3
C
$$\frac{3}{5}$$
D
$$\frac{-3}{5}$$
4
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$$ and $$\overline{\mathrm{c}}=\hat{\mathrm{i}}+\alpha \hat{\mathrm{j}}+\beta \hat{\mathrm{k}}$$ are linearly dependent vectors and $$|\bar{c}|=\sqrt{3}$$, then the values of $$\alpha$$ and $$\beta$$ are respectively.

A
$$1,1$$
B
$$2,1$$
C
$$0,1$$
D
$$1,2$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12