If $$\overline{\mathrm{a}}$$ and $$\overline{\mathrm{b}}$$ are two unit vectors such that $$\overline{\mathrm{a}}+2 \overline{\mathrm{b}}$$ and $$5 \bar{a}-4 \bar{b}$$ are perpendicular to each other, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is
If $$(\bar{a} \times \bar{b}) \times \bar{c}=-5 \bar{a}+4 \bar{b}$$ and $$\bar{a} \cdot \bar{b}=3$$, then the value of $$\bar{a} \times(\bar{b} \times \bar{c})$$ is
If $$\bar{p}=\hat{i}+\hat{j}+\hat{k}$$ and $$\bar{q}=\hat{i}-2 \hat{j}+\hat{k}$$. Then a vector of magnitude $$5 \sqrt{3}$$ units perpendicular to the vector $$\bar{q}$$ and coplanar with $$\bar{p}$$ and $$\bar{q}$$ is
If $$\bar{a}$$ and $$\bar{b}$$ are two unit vectors such that $$\bar{a}+2 \bar{b}$$ and $$5 \bar{a}-4 \bar{b}$$ are perpendicular to each other, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is