1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\mathrm{pi}+\hat{\mathrm{j}}+\mathrm{q} \hat{\mathrm{k}}$ are mutually orthogonal, then $(p, q)$ is equal to

A
$(3,-2)$
B
$(-2,3)$
C
$(-3,2)$
D
$(2,-3)$
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{u}, \bar{v}$ and $\bar{w}$ are three non-coplanar vectors, then $(\bar{u}+\bar{v}-\bar{w}) \cdot[(\bar{u}-\bar{v}) \times(\bar{v}-\bar{w})]$ is equal to

A
$\overline{\mathrm{u}} \cdot(\overline{\mathrm{v}} \times \overline{\mathrm{w}})$
B
$\overline{\mathrm{u}} \cdot(\overline{\mathrm{w}} \times \overline{\mathrm{v}})$
C
$3 \bar{u} \cdot(\bar{v} \times \bar{w})$
D
$0$
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{u}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}, \overline{\mathrm{v}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}$ and $\overline{\mathrm{w}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$. If $\hat{\mathrm{n}}$ is a unit vector such that $\overline{\mathbf{u}} \cdot \hat{\mathrm{n}}=0$ and $\overline{\mathrm{v}} \cdot \hat{\mathrm{n}}=0$, then $|\overline{\mathrm{w}} \cdot \hat{\mathrm{n}}|$ is equal to

A
0
B
1
C
2
D
3
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}, \bar{b}$ and $\bar{c}$ be three unit vectors such that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{\sqrt{3}}{2}(\overline{\mathrm{~b}}+\overline{\mathrm{c}})$. If $\bar{b}$ is not parallel to $\bar{c}$, then the angle between $\bar{a}$ and $\bar{b}$ is

A
$\frac{3 \pi}{4}$
B
$\frac{\pi}{2}$
C
$\frac{2 \pi}{3}$
D
$\frac{5 \pi}{6}$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12