1
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The vectors are $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\bar{a} \cdot \bar{c}=|\bar{c}|$$ and $$|\bar{c}-\bar{a}|=2 \sqrt{2}$$, angle between $$\bar{a} \times \bar{b}$$ and $$\bar{c}$$ is $$\frac{\pi}{4}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|$$ is

A
3
B
$$\frac{3}{\sqrt{2}}$$
C
$$3 \sqrt{2}$$
D
1
2
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\bar{a}=\hat{i}+2 \hat{j}+\hat{k}, \bar{b}=\hat{i}-\hat{j}+\hat{k}, \bar{c}=\hat{i}+\hat{j}-\hat{k}$$, then a vector in the plane of $$\bar{a}$$ and $$\bar{b}$$, whose projection on $$\overline{\mathrm{c}}$$ is $$\frac{1}{\sqrt{3}}$$, is

A
$$\hat{i}+\hat{j}-2 \hat{k}$$
B
$$3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}}$$
C
$$4 \hat{i}-\hat{j}+4 \hat{k}$$
D
$$2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}$$
3
MHT CET 2023 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\bar{a}, \bar{b}, \bar{c}$$ be three non-zero vectors, such that no two of them are collinear and $$(\bar{a} \times \bar{b}) \times \bar{c}=\frac{1}{3}|\bar{b}||\bar{c}| \bar{a}$$. If $$\theta$$ is the angle between the vectors $$\bar{b}$$ and $$\bar{c}$$, then the value of $$\sin \theta$$ is

A
$$\frac{2 \sqrt{2}}{3}$$
B
$$\frac{-\sqrt{2}}{3}$$
C
$$\frac{\sqrt{2}}{3}$$
D
$$\sqrt{\frac{2}{3}}$$
4
MHT CET 2023 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$$, then vector $$\overline{\mathrm{r}}$$ satisfying $$\overline{\mathrm{a}} \times \overline{\mathrm{r}}=\overline{\mathrm{b}}$$ and $$\overline{\mathrm{a}} \cdot \overline{\mathrm{r}}=3$$ is

A
$$\frac{5}{3} \hat{\mathrm{i}}+\frac{2}{3} \hat{\mathrm{j}}+\frac{2}{3} \hat{\mathrm{k}}$$
B
$$-\frac{5}{3} \hat{\mathrm{i}}+\frac{2}{3} \hat{\mathrm{j}}+\frac{2}{3} \hat{\mathrm{k}}$$
C
$$\frac{5}{3} \hat{\mathrm{i}}-\frac{2}{3} \hat{\mathrm{j}}+\frac{2}{3} \hat{\mathrm{k}}$$
D
$$-\frac{5}{3} \hat{\mathrm{i}}+\frac{2}{3} \hat{\mathrm{j}}+\frac{1}{3} \hat{\mathrm{k}}$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12