1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}, \hat{i}+\hat{j}+c \hat{k}$ $(a \neq b, c \neq 1)$ are coplanar, then $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ has the value __________.

A
1
B
$-$1
C
$-$2
D
5
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are three non-coplanar vectors, then $(\bar{a}+\bar{b}+\bar{c}) \cdot[(\bar{a}+\bar{b}) \times(\bar{a}+\bar{c})]$ equals

A
0
B
$[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$
C
$2[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$
D
$-[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Suppose that $\bar{p}, \bar{q}$ and $\overline{\mathrm{r}}$ are three non-coplanar vectors in $\mathbb{R}^3$. Let the components of a vector $\overline{\mathrm{s}}$ along $\overline{\mathrm{p}}, \overline{\mathrm{q}}$ and $\overline{\mathrm{r}}$ be 4,3 and 5 respectively. If the components of this vector $\overline{\mathrm{s}}$ along $(-\overline{\mathrm{p}}+\overline{\mathrm{q}}+\overline{\mathrm{r}}),(\overline{\mathrm{p}}-\overline{\mathrm{q}}+\overline{\mathrm{r}})$ and $(-\overline{\mathrm{p}}-\overline{\mathrm{q}}+\overline{\mathrm{r}})$ are $x$, $y$ and $z$ respectively, then the value of $2 x+y+z$ is

A
10
B
6
C
9
D
8
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$ If $\bar{c}$ is a vector such that $\bar{a} \cdot \bar{c}=|\bar{c}|$, $|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\bar{c}$ is $60^{\circ}$, then the value of $|(\bar{a} \times \bar{b}) \times \bar{c}|$ is

A
$\frac{\sqrt{3}}{2}$
B
$\frac{3 \sqrt{3}}{2}$
C
$\frac{5 \sqrt{3}}{2}$
D
$\frac{\sqrt{3}}{4}$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12