If the vector $\overline{\mathrm{c}}$ lies in the plane of $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, where $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=x \hat{\mathrm{i}}-(2-x) \hat{\mathrm{j}}-\hat{\mathrm{k}}$, then the value of $x$ is
Let $\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$ be three vectors. A vector $\bar{v}$ in the plane of $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, whose projection on $\overline{\mathrm{c}}$ is $\frac{1}{\sqrt{3}}$, is given by
If $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are two unit vectors such that $5 \overline{\mathrm{a}}+4 \overline{\mathrm{~b}}$ and $\overline{\mathrm{a}}-2 \overline{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\bar{a}$ and $\bar{b}$ is
Let $\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\bar{b}=\hat{i}+\hat{j}$. If $\bar{c}$ is a vector such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\overline{\mathrm{c}}$ is $30^{\circ}$, then $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|$ is equal to