1
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ be three non-zero vectors such that no two of them are collinear and $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\frac{1}{3}|\overline{\mathrm{~b}}||\overline{\mathrm{c}}| \overline{\mathrm{a}}$. If ' $\theta$ ' is the angle between the vectors $\bar{b}$ and $\bar{c}$, then value of $\sin \theta$ is

A
$\frac{2}{3}$
B
$\frac{-\sqrt{2}}{3}$
C
$-\frac{1}{3}$
D
$\frac{2 \sqrt{2}}{3}$
2
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{x}=\frac{\bar{b} \times \bar{c}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \bar{y}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$ and $\overline{\mathrm{z}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}$ where $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar vectors, then value of $\bar{x} \cdot(\overline{\mathrm{a}}+\overline{\mathrm{b}})+\bar{y} \cdot(\overline{\mathrm{~b}}+\overline{\mathrm{c}})+\overline{\mathrm{z}} \cdot(\overline{\mathrm{c}}+\overline{\mathrm{a}})$ is

A
3
B
1
C
$-$1
D
0
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}$ and $\bar{b}$ are two unit vectors such that $5 \bar{a}+4 \bar{b}$ and $\bar{a}-2 \bar{b}$ are perpendicular to each other, then the between $\bar{a}$ and $\bar{b}$ is

A
$\frac{2 \pi}{3}$
B
$\cos ^{-1}\left(\frac{2}{3}\right)$
C
$\frac{\pi}{3}$
D
$\cos ^{-1}\left(\frac{1}{3}\right)$
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let two non-collinear unit vectors $\hat{\mathrm{a}}$ and $\hat{\mathrm{b}}$ form an acute angle. A point P moves, so that at any time $t$ the position vector $\overline{O P}$, where $O$ is the origin, is given by $\hat{a} \cos t+\hat{b} \sin t$. When $P$ is farthest from origin O , let M be the length of $\overline{\mathrm{OP}}$ and $\hat{\mathrm{u}}$ be the unit vector along $\overline{\mathrm{OP}}$, then

A
$\hat{\mathrm{u}}=\frac{\hat{\mathrm{a}}+\hat{\mathrm{b}}}{|\hat{\mathrm{a}}+\hat{\mathrm{b}}|}$ and $M=(1+\hat{\mathrm{a}} \cdot \hat{\mathrm{b}})^{\frac{1}{2}}$
B
$\hat{\mathrm{u}}=\frac{\hat{\mathrm{a}}-\hat{\mathrm{b}}}{|\hat{\mathrm{a}}-\hat{\mathrm{b}}|}$ and $M=(1+\hat{a} \cdot \hat{b})^{\frac{1}{2}}$
C
$\hat{\mathrm{u}}=\frac{\hat{\mathrm{a}}+\hat{\mathrm{b}}}{|\hat{\mathrm{a}}+\hat{\mathrm{b}}|}$ and $\mathrm{M}=(1+2 \hat{\mathrm{a}} \cdot \hat{\mathrm{b}})^{\frac{1}{2}}$
D
$\hat{\mathrm{u}}=\frac{\hat{\mathrm{a}}-\hat{\mathrm{b}}}{|\hat{\mathrm{a}}-\hat{\mathrm{b}}|}$ and $\mathrm{M}=(1-2 \hat{\mathrm{a}} \cdot \hat{\mathrm{b}})^{\frac{1}{2}}$
MHT CET Subjects
EXAM MAP