Two adjacent sides of a parallelogram $$\mathrm{ABCD}$$ are given by $$\overline{A B}=2 \hat{i}+10 \hat{j}+11 \hat{k}$$ and $$\overline{\mathrm{AD}}=-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$$. The side $$\mathrm{AD}$$ is rotated by an acute angle $$\alpha$$ in the plane of parallelogram so that $$\mathrm{AD}$$ becomes $$\mathrm{AD}^{\prime}$$. If $$\mathrm{AD}^{\prime}$$ makes a right angle with side AB, then the cosine of the angle $$\alpha$$ is given by
If the area of the triangle with vertices $$(1,2,0)$$, $$(1,0,2)$$ and $$(0, x, 1)$$ is $$\sqrt{6}$$ square units, then the value of $x$ is
Let $$\overline{\mathrm{A}}$$ be a vector parallel to line of intersection of planes $$P_1$$ and $$P_2$$ through origin. $$P_1$$ is parallel to the vectors $$2 \hat{j}+3 \hat{k}$$ and $$4 \hat{j}-3 \hat{k}$$ and $$P_2$$ is parallel to $$\hat{j}-\hat{k}$$ and $$3 \hat{i}+3 \hat{j}$$, then the angle between $$\bar{A}$$ and $$2 \hat{i}+\hat{j}-2 \hat{k}$$ is
$$\overline{\mathrm{u}}, \overline{\mathrm{v}}, \overline{\mathrm{w}}$$ are three vectors such that $$|\overline{\mathrm{u}}|=1, |\bar{v}|=2,|\bar{w}|=3$$. If the projection of $$\bar{v}$$ along $$\bar{u}$$ is equal to projection of $$\bar{w}$$ along $$\bar{u}$$ and $$\bar{v}, \bar{w}$$ are perpendicular to each other, then $$|\bar{u}-\bar{v}+\bar{w}|=$$