If $$\overline{\mathrm{a}}=\mathrm{m} \overline{\mathrm{b}}+\mathrm{nc}$$, where $$\overline{\mathrm{a}}=4 \hat{\mathrm{i}}+13 \hat{\mathrm{j}}-18 \hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overline{\mathrm{c}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$$, then $$\mathrm{m}+\mathrm{n}=$$
If the volume of tetrahedron, whose vertices are with position vectors $$\hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k}$$ and $$7 \hat{i}-4 \hat{j}+7 \hat{k}$$ is 11 cubic units, then value of $$\lambda$$ is
Scalar projection of the line segment joining the points $$\mathrm{A}(-2,0,3), \mathrm{B}(1,4,2)$$ on the line whose direction ratios are $$6,-2,3$$ is
If $$\overline{\mathrm{a}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$$ and $$\overline{\mathrm{c}}=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}$$ are such that $$(\bar{a}+\lambda \bar{b})$$ is perpendicular to $$\bar{c}$$, then the value of $$\lambda$$ is