1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\hat{a}, \hat{b}$, and $\hat{c}$ are three unit vectors such that $\hat{a} \times(\hat{b} \times \hat{c})=\frac{\sqrt{3}}{2}(\hat{b}+\hat{c})$. If $\dot{b}$ is not parallel to $\hat{c}$, then the angle between $\hat{a}$ and $\hat{b}$ is

A
$\frac{5 \pi}{6}$
B
$\frac{\pi}{6}$
C
$\frac{\pi}{3}$
D
$\frac{2 \pi}{3}$
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

For all real $x$, the vectors $C x \hat{i}-6 \hat{j}-3 \hat{k}$ and $x \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \mathrm{C} x \hat{\mathrm{k}}$ make an obtuse angle with each other, then the value of C can be in

A
$(0,1)$
B
$\left(-2, \frac{-4}{3}\right)$
C
$\left(\frac{-4}{3}, 0\right)$
D
$\left(0, \frac{4}{3}\right)$
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$$ and $$\bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\bar{a} \cdot \bar{c}=|\bar{c}|,|\bar{c}-\bar{a}|=2 \sqrt{2}$$ and the angle between $$\bar{a} \times \bar{b}$$ and $$\bar{c}$$ is $$\frac{2 \pi}{3}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|=$$

A
$$\frac{\sqrt{3}}{2}$$
B
$$\frac{3 \sqrt{3}}{2}$$
C
$$3 \sqrt{3}$$
D
$$4 \sqrt{3}$$
4
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$|\bar{a}|=2,|\bar{b}|=3,|\bar{c}|=5$$ and each of the angles between the vectors $$\bar{a}$$ and $$\bar{b}, \bar{b}$$ and $$\bar{c}$$, $$\bar{c}$$ and $$\bar{a}$$ is $$60^{\circ}$$, then the value of $$|\bar{a}+\bar{b}+\bar{c}|$$ is

A
$$\sqrt{69}$$
B
$$\sqrt{70}$$
C
$$\sqrt{80}$$
D
$$\sqrt{39}$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12