In a quadrilateral $$ABCD, M$$ and $$N$$ are the mid-points of the sides $$A B$$ and $$C D$$ respectively. If $$\mathbf{A D}+\mathbf{B C}=t \mathbf{M N}$$, then $$t=$$
If $$[\vec{a}\ \vec{b}\ \vec{c}\ ] \neq 0$$, then $$\frac{[\vec{a}\ +\vec{b}\ \vec{b}\ +\vec{c}\ \vec{c}\ +\vec{a}\ ]}{[\vec{b}\ \vec{c}\ \vec{a}\ ]}=$$
If the scalar triple product of the vectors $-3 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}, 3 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}$ and $7 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}$ is 272 then $\lambda=\ldots \ldots$
$\mathbf{a}$ and $\mathbf{b}$ are non-collinear vectors. If $\mathbf{c}=(x-2) \mathbf{a}+\mathbf{b}$ and $\mathbf{d}=(2 x+1) \mathbf{a}-\mathbf{b}$ are collinear vectors, then the value of $x=\ldots \ldots$