Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$$ and $$\bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$$ and the angle between $$(\bar{a} \times \bar{b})$$ and $$\bar{c}$$ is $$\frac{\pi}{6}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|$$ is
If $$\quad \overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}, \quad \overline{\mathrm{b}}=2 \hat{\mathrm{j}}-\hat{\mathrm{k}} \quad$$ and $$\quad \overline{\mathrm{r}} \times \overline{\mathrm{a}}=\overline{\mathrm{b}} \times \overline{\mathrm{a}}, \overline{\mathrm{r}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$, then the value $$\frac{\overline{\mathrm{r}}}{|\overline{\mathrm{r}}|}$$ is
Let $$\bar{a}, \bar{b}$$ and $$\bar{c}$$ be three unit vectors such that $$\bar{a} \times(\bar{b} \times \bar{c})=\frac{\sqrt{3}}{2}(\bar{b}+\bar{c})$$. If $$\bar{b}$$ is not parallel to $$\bar{c}$$, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is
If $$\overline{\mathrm{a}}$$ and $$\overline{\mathrm{b}}$$ are two unit vectors such that $$\overline{\mathrm{a}}+2 \overline{\mathrm{b}}$$ and $$5 \bar{a}-4 \bar{b}$$ are perpendicular to each other, then the angle between $$\bar{a}$$ and $$\bar{b}$$ is